
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, Feb. 2024 327
Copyright ⓒ 2024 KSII

This research was supported by the Key R&D Projects of Jilin Provincial Science and Technology Development
Plan, China (No. 20230203091SF). We express our gratitude for reviewing our manuscript.

http://doi.org/10.3837/tiis.2024.02.004 ISSN : 1976-7277

Edge Computing Task Offloading of
Internet of Vehicles Based on Improved

MADDPG Algorithm

Ziyang Jin1, Yijun Wang 1*, and Jingying Lv 1
1 School of Electronic and Information Engineering, Changchun University of Science and Technology,

Changchun,130022, China
[e-mail: wangyijun@cust.edu.cn]

*Corresponding author: Yijun Wang

Received May 30, 2023; revised October 20, 2023; accepted February 7, 2024;
published February 29, 2024

Abstract

Edge computing is frequently employed in the Internet of Vehicles, although the computation
and communication capabilities of roadside units with edge servers are limited. As a result, to
perform distributed machine learning on resource-limited MEC systems, resources have to be
allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the
current IoV concerns of high delay and limited offloading utility. Firstly, we employ the
MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated
model and modifies the aggregation model parameters to achieve optimal policy learning.
Finally, the new approach is contrasted with current reinforcement learning techniques. The
simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm
improves offloading utility by 2% and 9%, and reduces delay by 29.6%.

Keywords: MADDPG, Edge Computing, IoV, Task offloading.

328 Jin et al.: Edge Computing Task Offloading of Internet of
Vehicles Based on Improved MADDPG Algorithm

1. Introduction

With more vehicles on city streets and the advancement of wireless communication
technologies, new Internet of Vehicles services are emerging, including computationally
intensive and delay-sensitive services such as augmented reality, image processing, driverless
path planning, and navigation. These applications and services require significant
computational resources and strict delay constraints. However, vehicles need more
computational resources to support many applications [1]. The traditional IoV(Internet of
Vehicles) can no longer meet the above demands, and edge computing has emerged to provide
a low-delay, highly reliable service experience for IoV services. Due to the limited resources
of edge servers, the deployment of edge servers is complicated by increasing vehicle terminals,
richer IoV services, and applications [2]. To improve local and remote execution of distributed
tasks in vehicles, multiple edge nodes and distant clouds can collaborate thanks to roadside
devices' storage and processing power with edge servers. Additionally, the cutting-edge
distributed deep learning paradigm of federated learning creates fresh opportunities for edge
computing [3].

Federation learning, a common machine learning method, transmits only a fraction of the
training results to the cloud without storing the data on the device. When partial training results
from millions of devices are collected in the cloud, they can be assembled into a new
supermodel that can be sent back to the device in the next step [4]. Applying federation
learning to the Internet of Vehicles can protect user privacy while speeding up vehicle
processing tasks. However, a single global model may fail when the data distribution changes
between clients. User heterogeneity is a major obstacle to federation learning, making it
difficult for the global model in IOV to converge [5]. The key to solving the IoV task is using
federated learning in edge computing for the Internet of Vehicles.

Considering the limited resources of edge servers, which leads to high delay and low
offloading utility in edge computing for IoV, an Improved MADDPG (Multi-Agent Deep
Deterministic Policy Gradient) [6] algorithm is proposed. This paper uses edge computing's
distributed characteristics to adapt to the vehicle network's dynamic changes and resource
limits to provide customers with low-delay services. The main contributions of this paper are
as follows:

(1) The MADDPG algorithm is used in the Internet of Vehicles to obtain an effective task
offloading policy through training to minimize the loss function with a limited resource
budget.

(2) Propose an Improved MADDPG algorithm that adds federated learning to the
MADDPG to enable adjustment of model aggregation frequencies better to learn
parametric models on vehicles with different computing power to reduce delay and
improve offloading utility.

(3) To confirm the efficacy of the suggested method, we ran extensive numerical
simulations and compared them to other strategies.

2. Related Work
A critical issue in the Internet of Vehicles is how to employ limited communication and
computer resources to deliver safe and dependable services to vehicle users. IoV and MEC
(Mobile Edge Computing) integration has created new business models and information
interaction for intelligent vehicles, which can solve this challenge.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 329

To deliver better services to nearby users and achieve seamless real-time responses to
mobile user service requests, Wang S proposed an offline microservice coordination algorithm
based on dynamic programming [7]. Shuai suggested an adaptive network routing technique
to find a balance between modeling accuracy and optimization efficiency in MEC systems
with time-varying connection delays [8]. In heterogeneous vehicle networks with many
random jobs, time-varying radio channels, and dynamic bandwidth, Ke proposed an adaptive
depth-reinforcement-based computational offloading approach [9]. Qin Z suggested a
hierarchical end-edge system that minimizes network overhead by deep collaboration between
data communication, computation offloading, and content caching to efficiently propagate
huge volumes of data or computation demands from nearby vehicles [10]. He X presented
enhanced deep reinforcement learning PS-DDPG to find the best offloading pattern learning
approach for vehicle tasks to improve stability and convergence [11]. IoV system with MEC
layers was presented by Wang G in [12]. After rearranging jobs according to delay tolerance,
a reinforcement learning technique allocates resources intelligently and automatically. To
arrange work across MEC servers and reduce downlink energy usage, Ning Z presented a
heuristic method [13].

The research as mentioned above, processes Internet of Vehicles tasks in edge computing
using reinforcement learning and conventional algorithms, but the task processing speed is
slightly slower. To increase service speed and flexibility, this paper considers using distributed
federated learning in edge computing.

In recent years, the machine learning model for the Internet of Vehicles application has
been primarily taught using data acquired by onboard devices, roadside units, and base stations.
However, the vehicle's vast data resources make it tough for the central server to cope.
Federated learning can alleviate resource constraints and lighten the load on the central server.

After evaluating the convergence of the gradient descent loss function, S. Wang
developed a control strategy [14] to balance the tradeoff between local model updating and
global model aggregation under resource restrictions. To safeguard the privacy of the updated
local model and eliminate security risks brought on by centralized administration, Y. Lu
proposed in [15] to add local differential privacy into cooperative learning. Samarakoon S
proposed a federated learning-based distributed solution in [16] to solve the joint power and
resource allocation problem of ultra-reliable low-delay communication in a vehicle network.
Yang H developed an analysis model in [17] to evaluate wireless federated learning and
examined federated learning model convergence rates with different scheduling approaches.
Amiri M studied federated learning at the edge of wireless networks in [18], where low-power
wireless devices collaborate with remote parameter servers to optimize end-to-end
performance. Bao W presented an edge computing-based Internet of Vehicles client selection
and networking approach in [19] to find the best behavior. D. Chen studied and described
delay minimization in [20] for collaborative multitask learning in computer networks with
numerous access points. Matching games determine the best task assignment technique. T
Dinh described in [21] a personalized federated learning approach that uses the Moreau
envelope as a regularization loss function to attain great performance on each client's task.

Existing approaches may need to be revised since the Internet of Vehicles scenario
necessitates the usage of varied learning models to complete tasks; therefore, this study
proposes an Improved MADDPG algorithm.

The following portions of this essay are as follows: Section III presents the system's
overall architecture and problem modeling. The proposed algorithm's formulation is shown in
Section IV. The experimental findings are analyzed in Section V. The entire paper is concluded
in Section VI.

330 Jin et al.: Edge Computing Task Offloading of Internet of
Vehicles Based on Improved MADDPG Algorithm

3. System Architecture and Problem Description

3.1 System Architecture
In the MEC system based on the Internet of Vehicles, the edge architecture is a widely used
model. This model places the collaboration between vehicles and base stations at the core,
achieving task collaboration through task offloading, computing resource sharing, and other
methods. Specifically, we represent vehicles as set,𝑁𝑁 = {1,2, . . . ,𝑁𝑁}, and each vehicle has an
IoV data task 𝑌𝑌𝑛𝑛 to complete. For ease of description, we use tuples 𝑌𝑌𝑛𝑛 = (𝐶𝐶𝑛𝑛,𝐷𝐷𝑛𝑛,𝑇𝑇𝐷𝐷𝑛𝑛) to
represent the total computing resources, input data size, and maximum allowable delay time
required for the vehicle n to complete the task 𝑌𝑌𝑛𝑛. Among them, the variable 𝐶𝐶𝑛𝑛 denotes the
computing resources necessary to accomplish the given task 𝑌𝑌𝑛𝑛 , the quantity of central
processing unit (CPU) cycles that must be performed, 𝐷𝐷𝑛𝑛 indicates the size of input data
required, 𝑇𝑇𝐷𝐷𝑛𝑛 indicates the maximum allowable delay time for completing a task 𝑌𝑌𝑛𝑛.

The present architectural design incorporates a Mobile Edge Computing server within the
base station to furnish computational services to vehicles. Using task offloading, the vehicle
can offload task 𝑌𝑌𝑛𝑛 to the base station for execution, thereby reducing its computational burden.
Simultaneously, it is imperative to guarantee the quality and promptness of tasks; this
architecture also supports the sharing and collaboration of computing resources; that is, when
computing resources are idle or urgent tasks need to be completed, it can request sharing and
collaboration of computing resources from other vehicles.

In summary, the MEC architecture based on the Internet of Vehicles effectively achieves
cooperation between vehicles and base stations through task offloading, computing resource
sharing, and other methods, improving the efficiency and quality of completing IoT data tasks.

The fundamental network elements of the Mobile Edge Computing framework, which is
founded on the IoV framework, as shown in Fig. 1. Edge vehicles: Each vehicle manages a
set of IoT sensors within its coverage area. QoE (Quality of Experience) requires vehicles to
process data locally or wirelessly offload to near MEC servers. MEC server: The MEC server
at the base station handles vehicle offloading, a computationally intensive data operation.
Vehicles can offload, so MEC servers may calculate QoE-based QoS (Quality of Service) by
analyzing job configuration files, including task size, channel circumstances, and available
resources.

Fig. 1. System Architecture

Edge Vehicles

MEC Server

Edge Node

Mobile vehicles

Computation queue

Transmission queue

CPU

CPU

Task queue

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 331

Tasks in the model can be processed locally or offloaded to edge nodes for processing. It
is assumed that at the beginning of each time slot, a new task arrives at the mobile device with
a certain probability. When a new task arrives at the mobile device, it first needs to decide
whether to process the task locally or offload it to the edge node. If the mobile device decides
to process the task locally, its scheduler will put the task into the compute queue for processing.
Otherwise, the mobile device needs to decide which edge node to offload the task to. For the
computation (or transmission) queue, if the processing (or sending) of a task is completed
within one-time slot, the next task in the queue will be processed (or transmitted) at the
beginning of the next time slot.

Table 1. Partial Variable Interpretation
𝐾𝐾 The set of available sub-bands
𝑏𝑏𝑛𝑛𝑘𝑘 offloading strategy for binary variable definitions

𝑏𝑏𝑛𝑛 global offloading decisions
𝑌𝑌𝑛𝑛 task
𝑛𝑛 Index of Vehicle
𝐷𝐷𝑛𝑛 the size of input data required for the task
𝑇𝑇𝑇𝑇𝑛𝑛 maximum allowable delay time for completing a task

𝐵𝐵 includes all of the task offloading variables k
nb .

𝑁𝑁𝑛𝑛 a group of vehicles whose duties are delegated to the MEC
server

𝑀𝑀𝑗𝑗 Index of MEC servers
𝑘𝑘 Index of sub-band

2σ background noise variance

𝑇𝑇 time consumption
𝐸𝐸 energy consumption
𝑃𝑃 offloading decision policy
𝐹𝐹 resource allocation policy
𝐽𝐽𝑛𝑛
𝑜𝑜𝑜𝑜𝑜𝑜 offloading utility
𝑓𝑓𝑛𝑛𝑙𝑙 computational resource allocated to the vehicle 𝑛𝑛
𝑜𝑜𝑛𝑛 vehicle’s observation

𝜙𝜙𝑛𝑛(𝑡𝑡) CPU resources
𝐷𝐷𝐷𝐷𝑗𝑗 the index of dataset
𝑤𝑤 model parameter of MADDPG

𝐹𝐹𝑗𝑗(𝑤𝑤) the loss function of the dataset 𝐷𝐷𝐷𝐷𝑗𝑗 at each node 𝑗𝑗
𝐶𝐶𝐶𝐶𝑚𝑚 the overall budget proposal for m-type resources
𝑤𝑤𝑓𝑓 final model parameter
𝐺𝐺 total number of global aggregations within ST iterations

𝑙𝑙𝑚𝑚 resources consumed by each local update step at all nodes,

𝑔𝑔𝑚𝑚 and each global aggregation step consumes

332 Jin et al.: Edge Computing Task Offloading of Internet of
Vehicles Based on Improved MADDPG Algorithm

3.2 Problem Description

3.2.1 Communication Model
The set of available sub-bands at the base station is represented by 𝐾𝐾 = {1,2, . . ,𝐾𝐾}. Define a
task offloading scheme using the binary variable 𝑏𝑏𝑛𝑛𝑘𝑘(𝑛𝑛 ∈ 𝑁𝑁,𝑘𝑘 ∈ 𝐾𝐾), which also covers uplink
subband scheduling; when 𝑏𝑏𝑛𝑛𝑘𝑘 is equal to 1, it signifies that offloading
𝑌𝑌𝑛𝑛 from vehicle n to the MEC server is carried out through sub-band 𝑘𝑘. The vehicle can
execute computer tasks or offload to the MEC server:

�𝑏𝑏𝑛𝑛𝑘𝑘 ≤ 1,𝑛𝑛 ∈ 𝑁𝑁
𝑘𝑘∈𝐾𝐾

(1)

The task offloading strategy 𝐵𝐵 is defined in this article as 𝐵𝐵 = {𝑏𝑏𝑛𝑛𝑘𝑘|𝑏𝑏𝑛𝑛𝑘𝑘 = 1,𝑛𝑛 ∈ 𝑁𝑁, 𝑘𝑘 ∈
𝐾𝐾} it includes all of the task offloading variables𝑏𝑏𝑛𝑛𝑘𝑘. Furthermore, 𝑁𝑁𝑛𝑛 = �𝑛𝑛 ∈ 𝑁𝑁|� 𝑏𝑏𝑛𝑛𝑘𝑘 =𝑘𝑘∈𝐾𝐾
1� it is represented as a fleet of vehicles assigned tasks managed by the MEC server.

It is posited that each vehicle and base station is equipped with a solitary antenna for
uplink communication. The uplink channel gain between the vehicle 𝑛𝑛 and the base station
over the subband 𝑘𝑘 is represented as ℎ𝑛𝑛𝑘𝑘 . The vehicle transmits power policy is 𝑃𝑃 =
{𝑝𝑝𝑛𝑛𝑘𝑘|0 < 𝑝𝑝𝑛𝑛𝑘𝑘 ≤ 𝑃𝑃𝑛𝑛𝑘𝑘 ,𝑛𝑛 ∈ 𝑁𝑁𝑛𝑛}, where 𝑝𝑝𝑛𝑛𝑘𝑘 is vehicle’s transmit power while offloading task 𝑌𝑌𝑛𝑛 to
the base station over channel 𝑘𝑘 with the maximum budget 𝑃𝑃𝑛𝑛𝑘𝑘. It is assumed that the MEC
system operates within a total operating band 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀, partitioned into K sub-bands of equal size
𝑊𝑊 = 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀/𝐾𝐾. Hence, the data transmission rate of the vehicle 𝑛𝑛 can be computed as follows:

𝑅𝑅𝑛𝑛 = 𝑊𝑊log2 �1 +
𝑝𝑝𝑛𝑛𝑘𝑘ℎ𝑛𝑛𝑘𝑘

𝜎𝜎2 +� (𝑏𝑏𝑥𝑥𝑘𝑘𝑝𝑝𝑥𝑥𝑘𝑘ℎ𝑥𝑥𝑘𝑘)𝑥𝑥∈𝑁𝑁𝑛𝑛,𝑥𝑥≠𝑛𝑛

� (2)

The variable 𝜎𝜎2 denotes the background noise variance, while the second term in the
denominator represents the interference that arises among vehicles sharing the same channel.
The duration for the vehicle 𝑛𝑛 to transmit its task input 𝐷𝐷𝑛𝑛 through the uplink can be
represented as:

𝑇𝑇𝑛𝑛
𝑢𝑢𝑢𝑢 =

𝐷𝐷𝑛𝑛
𝑅𝑅𝑛𝑛

,∀𝑛𝑛 ∈ 𝑁𝑁 (3)

Thus, the vehicle's offloading consumption of energy is:

𝐸𝐸𝑛𝑛
𝑢𝑢𝑢𝑢 = 𝑝𝑝𝑛𝑛𝑇𝑇𝑛𝑛

𝑢𝑢𝑢𝑢 = 𝑝𝑝𝑛𝑛
𝐷𝐷𝑛𝑛
𝑅𝑅𝑛𝑛

,∀𝑛𝑛 ∈ 𝑁𝑁 (4)

where 𝑝𝑝𝑛𝑛 = � 𝑝𝑝𝑛𝑛𝑘𝑘𝑘𝑘∈𝐾𝐾 ,∀𝑛𝑛 ∈ 𝑁𝑁.

3.2.2 Computing Model
Local: The variable 𝑓𝑓𝑛𝑛𝑙𝑙 represents the computational resource assigned to the vehicle denoted
as 𝑛𝑛 responsible for executing the data task. F must be at most, the overall computational
capacity 𝐹𝐹𝑛𝑛 of the vehicle. Thus, it is possible to establish the computational resource
allocation policy for the vehicle 𝐹𝐹 = {𝑓𝑓𝑛𝑛𝑙𝑙|0 < 𝑓𝑓𝑛𝑛𝑙𝑙 ≤ 𝐹𝐹𝑛𝑛,𝑛𝑛 ∈ 𝑁𝑁}. The time it takes a task input
𝐷𝐷𝑛𝑛 to execute on the vehicle n can be denoted as:

𝑇𝑇𝑛𝑛𝑙𝑙 =
𝐶𝐶𝑛𝑛
𝑓𝑓𝑛𝑛𝑙𝑙

(5)

The local task performance of a vehicle is associated with its energy consumption.
𝐸𝐸𝑛𝑛𝑙𝑙 = 𝜅𝜅�𝑓𝑓𝑛𝑛𝑙𝑙�

2𝐶𝐶𝑛𝑛 (6)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 333

where 𝜅𝜅 is the energy factor depending on the chip architecture [22] and is the CPU workload
of the vehicle 𝑛𝑛.

Edge: In the case of offloading, the base station's MEC server can give computing
services to many vehicles at the same time. The MEC server has more computing power 𝑓𝑓𝑒𝑒
and a more stable energy source than the vehicle. On the MEC server, the task execution time
can be determined as follows:

𝑇𝑇𝑛𝑛𝑒𝑒𝑒𝑒 =
𝐶𝐶𝑛𝑛
𝑓𝑓𝑒𝑒

,∀𝑛𝑛 ∈ 𝑁𝑁 (7)

Due to the typically small size of the data results, we did not model the portion of the
downloaded data compared to the offloaded data. The equation that represents the cost
incurred by a vehicle due to the delay in offloading its task is as follows:

𝑇𝑇𝑛𝑛
𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑛𝑛

𝑢𝑢𝑢𝑢 + 𝑇𝑇𝑛𝑛𝑒𝑒𝑒𝑒 = �
𝐷𝐷𝑛𝑛
𝑅𝑅𝑛𝑛

+
𝐶𝐶𝑛𝑛
𝑓𝑓𝑒𝑒
� ,∀𝑛𝑛 ∈ 𝑁𝑁 (8)

For the energy cost, the energy cost consumed by vehicle 𝑛𝑛 in offloading its task 𝑌𝑌𝑛𝑛 is
only related to the data transfer and is given by the following equation:

𝐸𝐸𝑛𝑛
𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐸𝐸𝑛𝑛

𝑢𝑢𝑢𝑢 = 𝑝𝑝𝑛𝑛
𝐷𝐷𝑛𝑛
𝑅𝑅𝑛𝑛

,∀𝑛𝑛 ∈ 𝑁𝑁 (9)

3.2.3 Problem Formulation
The present study formulates the MADDPG scheme's system utility by incorporating the
offloading utility.

We use an offloading utility function that primarily takes task calculation time and energy
usage into account. In the MEC system, these two factors are the main metrics used to
characterize the offloading QoE, which can be expressed as:

𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑛𝑛
𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛 + 𝑇𝑇𝑛𝑛𝑙𝑙(1− 𝑏𝑏𝑛𝑛),∀𝑛𝑛 ∈ 𝑁𝑁 (10)

𝐸𝐸𝑛𝑛 = 𝐸𝐸𝑛𝑛
𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑛𝑛 + 𝐸𝐸𝑛𝑛𝑙𝑙 (1 − 𝑏𝑏𝑛𝑛),∀𝑛𝑛 ∈ 𝑁𝑁 (11)

where 𝑏𝑏𝑛𝑛 = ∑ 𝑏𝑏𝑛𝑛𝑘𝑘𝑘𝑘∈𝐾𝐾 ,∀𝑛𝑛 ∈ 𝑁𝑁 , which represents the global offloading decision, all the
vehicles involved in the decision work together to select the optimal offloading strategy by
integrating the results of the offloading decisions of all sub-bands. This means that the
intelligence do not only focus on the offloading of their own sub-bands but also considers the
performance and resource utilization of the overall system to maximize the overall
performance or balance the system efficiency.

We define a QoE-perceived utility function to calculate the usefulness of offloading by
weighting the time and energy required to execute the activity locally against offloading it.

𝐽𝐽𝑛𝑛
𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜆𝜆𝑛𝑛𝑇𝑇 �

𝑇𝑇𝑛𝑛𝑙𝑙 − 𝑇𝑇𝑛𝑛
𝑇𝑇𝑛𝑛𝑙𝑙

�+ 𝜆𝜆𝑛𝑛𝐸𝐸 �
𝐸𝐸𝑛𝑛𝑙𝑙 − 𝐸𝐸𝑛𝑛
𝐸𝐸𝑛𝑛𝑙𝑙

� (12)

where 𝜆𝜆𝑛𝑛𝑇𝑇 ,𝜆𝜆𝑛𝑛𝐸𝐸 ∈ [0,1] is set by the vehicle n to show the preference for time and energy costs
when computing the task. The vehicle might increase the weighting factor for time
consumption if the task is urgent. If a vehicle uses less energy, the energy consumption
component should also be given priority.

We provide offloading method 𝐵𝐵 , computational resource allocation method 𝐹𝐹 , and
transmission power method 𝑃𝑃. The offloading utility is the weighted sum 𝐽𝐽𝑛𝑛

𝑜𝑜𝑜𝑜𝑜𝑜 of all vehicle
offloading utilities:

𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝐽𝐽𝑛𝑛
𝑜𝑜𝑜𝑜𝑜𝑜

𝑛𝑛∈𝑁𝑁

(𝐵𝐵,𝑃𝑃,𝐹𝐹) (13)

334 Jin et al.: Edge Computing Task Offloading of Internet of
Vehicles Based on Improved MADDPG Algorithm

Our goal is to maximize the offloading utility using the MADDPG algorithm:
max𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑋𝑋,𝑃𝑃,𝐹𝐹
𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜 (14)

𝑏𝑏𝑛𝑛𝑘𝑘 ∈ {0,1}, (15)
�𝑏𝑏𝑛𝑛𝑘𝑘 ≤ 1
𝑘𝑘∈𝐾𝐾

, (16)

0 < 𝑝𝑝𝑛𝑛𝑘𝑘 ≤ 𝑃𝑃𝑛𝑛𝑘𝑘 , (17)
0 < 𝑓𝑓𝑛𝑛𝑙𝑙 ≤ 𝐹𝐹𝑛𝑛 (18)

Each task can be carried out locally or offloaded to the MEC server through a sub-channel,
according to constraints (15) and (16). The transmission's power constraint for every vehicle
is shown in (17). Each vehicle n is required to allocate computing resources to carry out
computational activities, but they are not permitted to go above the entire computational
budget, according to constraint (18).

The increase in high-dimensional system state space brought on by the rise of edge
vehicles may make it more difficult to apply the suggested offloading model in real-world
MEC scenarios. This article addresses the task offloading issue by using an Improved
MADDPG algorithm.

4. Modeling based on Improved MADDPG Algorithm

4.1 Algorithm Overview
In the Improved MADDPG algorithm, we combine the MADDPG algorithm with the adaptive
federated learning algorithm to reduce the time required to complete the task offload, as shown
in Fig. 2.

Fig. 2. Algorithm process

In this architecture, 𝑗𝑗 service nodes are present. This study solely examines RSU as the

roadside service node, which is represented as 𝑀𝑀1,𝑀𝑀2, . . . ,𝑀𝑀𝑗𝑗. Each RSU incorporates an MEC
server. The roadside unit with an edge server receives consumer data and requests and updates
local model parameters using a gradient descent algorithm. The edge server prioritizes the

MEC Server
MADDPG

Network Model

Local Training

Local Model
Update

Global Model
Parameters

Cloud Server

Global Update

Wireless
Transmission Unit

Wireless
Transmission Unit

Wireless
Transmission

MADDPG
Network Model

Gradient
Descent

Distributed
Gradient Descent

Time slot

MEC Sever 1

MEC Sever 2

MEC Sever 3

MEC Sever

Cloud Sever

…

Processing task

Model update

Model Aggregation

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 335

tasks that are offloaded from the vehicle at the beginning of each time slot. During idle time
slots, the edge server trains the MADDPG model parameters using data that was acquired
locally. The edge server sends the parameters to the cloud server through wireless
communication after completing numerous training sessions. The cloud server incorporates
the model parameters from all of the edge servers and executes a global update after receiving
the parameters from the edge servers and determining the right aggregation frequency based
on the federated learning method. The gradient descent technique is used for this global update
procedure. The cloud server transmits the new parameters back to the edge servers after the
global update is finished. This enables the edge servers to process tasks with the new
parameters.

4.2 Markov Modelling
When we study MEC-based systems, traditional single-intelligent or independent multi-
intelligent plans do not yield vehicle cooperation strategies because of the non-smooth and
locally observable environment. The 𝑂𝑂𝑛𝑛 observed by the agent 𝑛𝑛 can change when the
strategies of other intelligence change; this differs from the cumulative reward 𝑟𝑟𝑛𝑛(𝑡𝑡) of its
actual state action. In addition, the presence of non-collaboration in the independent multi-
intelligence learning scheme leads to the fact that the agent 𝑛𝑛 has only partial information and
is not informed about the updates of the other intelligence. This impacts the agents' rewards
and makes it difficult to ensure smooth convergence of the learning algorithm. For this reason,
this paper adopts a MADDPG solution that combines centralized learning with decentralized
execution. MADDPG is based on the idea of centralized learning and decentralized execution.
As shown in Fig. 3.

Fig. 3. MADDPG structure diagram

Replay
Memory

Buffer

Actor 1

Critic 1

Replay
Memory

Buffer

Actor N

Critic N

…

Actor 1 Actor N…

𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘 𝑡𝑡 , 𝐷𝐷𝑐𝑐ℎ𝑡𝑡𝑛𝑛𝑛𝑛𝑒𝑒𝑙𝑙 𝑡𝑡
𝐷𝐷𝑢𝑢𝑜𝑜𝑝𝑝𝑒𝑒𝑝𝑝(𝑡𝑡), 𝐷𝐷𝑝𝑝𝑒𝑒𝑡𝑡(𝑡𝑡)

State

𝑏𝑏𝑛𝑛𝑘𝑘 𝑡𝑡 , 𝑘𝑘 𝑡𝑡
𝑝𝑝𝑛𝑛𝑘𝑘(𝑡𝑡), 𝑓𝑓𝑛𝑛𝑙𝑙(𝑡𝑡),𝜙𝜙𝑁𝑁(𝑡𝑡)

Action

System utility:
𝐽𝐽 𝑡𝑡 = 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)

Reward

Centralized Training

Di
st

rib
ut

ed
 E

xe
cu

tio
n

336 Jin et al.: Edge Computing Task Offloading of Internet of
Vehicles Based on Improved MADDPG Algorithm

The objective function is converted from the maximization of system utility to the
maximization of revenue. The task offloading problem is formulated using MDP (Markov
Decision Process), represented by the tuple 〈𝑁𝑁, 𝑆𝑆,𝐴𝐴,𝑂𝑂〉. Every vehicle is an intelligent agent
that determines how to get the most out of the system by observing the environment while
cooperating with other intelligent agents as the number of vehicles.

𝑁𝑁 = {1,2, . . . ,𝑁𝑁} is used. 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, . . . , 𝑠𝑠𝑁𝑁} represents the set of states, 𝐴𝐴 =
{𝑎𝑎1,𝑎𝑎2, . . . ,𝑎𝑎𝑁𝑁} represents the set of intelligence actions, and 𝑂𝑂 = {𝑜𝑜1,𝑜𝑜2, . . . , 𝑜𝑜𝑁𝑁} stands for
the set of vehicles' observations. Define each tuple element in each time interval, as shown
below.

4.2.1 State
The environmental state is comprised of four distinct components, namely the task state
𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡), channel state 𝑆𝑆𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡), power state 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡), and resource state 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡). The
definition of the system state is as follows:

𝑆𝑆(𝑡𝑡) = �𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡), 𝑆𝑆𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡), 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡), 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)� (19)
where 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) = [𝐷𝐷𝑛𝑛(𝑡𝑡),𝐶𝐶𝑛𝑛(𝑡𝑡)] represents the relationship between the computational task
size denoted by 𝐷𝐷𝑛𝑛(𝑡𝑡) a given vehicle and the number of input CPU cycles required to
complete the task data 𝐶𝐶𝑛𝑛(𝑡𝑡).

When a vehicle utilizes subchannel 𝑘𝑘 in time slot 𝑡𝑡:

𝑆𝑆𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = 𝑐𝑐𝑛𝑛𝑘𝑘(𝑡𝑡) = �
𝑐𝑐1,1 … 𝑐𝑐1,𝑘𝑘
… … …
𝑐𝑐𝑁𝑁,1 … 𝑐𝑐𝑁𝑁,𝑘𝑘

� (20)

where 𝑐𝑐𝑛𝑛𝑘𝑘(𝑡𝑡) is the answer, if so, then 𝑐𝑐𝑛𝑛𝑘𝑘(𝑡𝑡) = 1, otherwise 𝑐𝑐𝑛𝑛𝑘𝑘(𝑡𝑡) = 0.
The power states are:

𝑆𝑆𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = 𝑐𝑐𝑛𝑛𝑘𝑘(𝑡𝑡) = �
𝑝𝑝1,1 … 𝑝𝑝1,𝑘𝑘
… … …
𝑝𝑝𝑁𝑁,1 … 𝑝𝑝𝑁𝑁,𝑘𝑘

� (21)

where 𝑝𝑝𝑛𝑛𝑘𝑘(𝑡𝑡) is the vehicle's transmit power level in the kth sub-channel, satisfying 0 <
𝑝𝑝𝑛𝑛𝑘𝑘(𝑡𝑡) ≤ 𝑃𝑃𝑛𝑛𝑘𝑘.

Moreover, the resource state is represented by the symbol 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) =
{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), . . . , 𝑣𝑣𝑁𝑁(𝑡𝑡)}, in which 𝑣𝑣𝑁𝑁(𝑡𝑡) comprises the state of the CPU resources 𝜙𝜙𝑛𝑛(𝑡𝑡) for
the vehicle and the computing resources 𝑓𝑓𝑛𝑛𝑙𝑙(𝑡𝑡) that are now accessible.

4.2.2 Action
Through the observation of the system status, each vehicle must process data at every stage,
encompassing crucial tasks such as offloading decisions and channel selection. The
representation of the action space can be expressed as follows:

𝐴𝐴(𝑡𝑡) = {𝑏𝑏𝑛𝑛𝑘𝑘(𝑡𝑡),𝑘𝑘(𝑡𝑡),𝑝𝑝𝑛𝑛𝑘𝑘(𝑡𝑡),𝑓𝑓𝑛𝑛𝑙𝑙(𝑡𝑡),𝜙𝜙𝑁𝑁(𝑡𝑡)} (22)

Offloading decision 𝑏𝑏𝑛𝑛𝑘𝑘(𝑡𝑡)：𝑏𝑏𝑛𝑛𝑘𝑘(𝑡𝑡) ∈ {0,1}. Based on the current task state, the vehicle
decides to locally execute the task 𝑏𝑏𝑛𝑛𝑘𝑘(𝑡𝑡) = 0 or offload it to the MEC server through channel
k, 𝑏𝑏𝑛𝑛𝑘𝑘(𝑡𝑡) = 1.

Channel selection 𝑘𝑘(𝑡𝑡)：𝑘𝑘(𝑡𝑡) = [1,2, . . . ,𝐾𝐾]. Every vehicle selects one of the available
channels based on the current channel state to offload the task to the MEC server.

Transmit power selection 𝑝𝑝𝑛𝑛𝑘𝑘(𝑡𝑡)：𝑝𝑝𝑛𝑛𝑘𝑘(𝑡𝑡) ∈ (0,𝑃𝑃𝑛𝑛𝑘𝑘). In consideration of the present task
state and channel state, each vehicle determines the appropriate transmission power level for

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 337

transmitting the data task to the MEC server.
Calculate resource allocation using 𝑓𝑓𝑛𝑛𝑙𝑙(𝑡𝑡)：𝑓𝑓𝑛𝑛𝑙𝑙(𝑡𝑡) = [𝑓𝑓1𝑙𝑙(𝑡𝑡),𝑓𝑓2𝑙𝑙(𝑡𝑡), . . . , 𝑓𝑓𝑁𝑁𝑙𝑙(𝑡𝑡)] . Every

vehicle allocates a portion of its computing resources to tasks based on the resource and task
states.

CPU resource allocation 𝜙𝜙𝑛𝑛(𝑡𝑡):𝜙𝜙𝑛𝑛(𝑡𝑡) = [𝜙𝜙1(𝑡𝑡),𝜙𝜙2(𝑡𝑡), . . . ,𝜙𝜙𝑁𝑁(𝑡𝑡)] . Every vehicle
allocates CPU resources based on the state of the available resources.

4.2.3 Reward
The system reward at a time slot 𝑡𝑡 is the sum of the rewards of all vehicles. After performing
each possible action 𝑎𝑎𝑛𝑛(𝑡𝑡), each vehicle n will receive a reward 𝑟𝑟(𝑠𝑠𝑛𝑛(𝑡𝑡),𝑎𝑎𝑛𝑛(𝑡𝑡)) in a particular
state 𝑠𝑠𝑛𝑛(𝑡𝑡). In this paper, the system reward function should be positively related to the
objective function in the optimization problem (13)-(18), aiming to maximize the system
utility of all vehicles. Then, we can specify the system reward function of the offloading
network for each time slot 𝑡𝑡 as:

𝑟𝑟(𝑠𝑠(𝑡𝑡),𝑎𝑎(𝑡𝑡)) = �𝑟𝑟(𝑠𝑠𝑛𝑛(𝑡𝑡),𝑎𝑎𝑛𝑛(𝑡𝑡))
𝑛𝑛∈𝑁𝑁

= 𝐽𝐽(𝑡𝑡) (23)

the system utility of the MEC is denoted by 𝐽𝐽(𝑡𝑡) = 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡).

4.3 Improved MADDPG Algorithm
In the MADDPG algorithm, 𝜋𝜋 = {𝜋𝜋1,𝜋𝜋2, . . . ,𝜋𝜋𝑁𝑁} is defined as the collection of all agent
policies and 𝜃𝜃 = {𝜃𝜃1,𝜃𝜃2, . . . ,𝜃𝜃𝑁𝑁} the set of parameters of the corresponding policy. To
establish the best possible policy 𝜋𝜋𝜃𝜃𝑛𝑛

∗ = argmax𝜋𝜋𝜃𝜃𝑛𝑛𝒥𝒥(𝜃𝜃𝑛𝑛) , each agent modifies its
𝜃𝜃𝑛𝑛parameters, where 𝒥𝒥(𝜃𝜃𝑛𝑛) is the objective function of the intelligence n as defined in (22).
So we can get the gradient of each agent:

𝛻𝛻𝜃𝜃𝑛𝑛𝒥𝒥(𝜃𝜃𝑛𝑛) = 𝔼𝔼𝑎𝑎∼𝜋𝜋𝑛𝑛[𝛻𝛻𝜃𝜃𝑛𝑛log𝜋𝜋𝑛𝑛(𝑎𝑎𝑛𝑛|𝑜𝑜𝑛𝑛)𝑄𝑄𝑛𝑛𝜋𝜋(𝑂𝑂,𝑎𝑎1, . . . ,𝑎𝑎𝑁𝑁)] (24)
where 𝑜𝑜𝑛𝑛 denotes the observation of the agent 𝑂𝑂 = {𝑜𝑜1,𝑜𝑜2, . . . , 𝑜𝑜𝑁𝑁}, 𝑄𝑄𝑛𝑛𝜋𝜋 is the critic network.

For a deterministic strategy, the gradient can be expressed as:
𝛻𝛻𝜃𝜃𝑛𝑛𝒥𝒥(𝜋𝜋𝑛𝑛) = 𝔼𝔼𝑎𝑎∼𝐷𝐷[𝛻𝛻𝜃𝜃𝑛𝑛𝜋𝜋𝑛𝑛(𝑎𝑎𝑛𝑛|𝑜𝑜𝑛𝑛)𝛻𝛻𝑎𝑎𝑛𝑛𝑄𝑄𝑛𝑛

𝜋𝜋(𝑂𝑂,𝑎𝑎1, . . . ,𝑎𝑎𝑁𝑁)|𝑎𝑎𝑛𝑛=𝜋𝜋𝑛𝑛(𝑜𝑜𝑛𝑛)] (25)
where 𝐷𝐷 is the replay buffer, the actor network is updated using this gradient. In contrast, the
critic network's parameters are updated using their mean square deviation from the target
network as a loss.

𝐿𝐿(𝜃𝜃𝑛𝑛) = 𝔼𝔼𝑜𝑜,𝑎𝑎,𝑟𝑟,𝑜𝑜, [𝑄𝑄𝑛𝑛𝜋𝜋(𝑂𝑂,𝑎𝑎1, . . . ,𝑎𝑎𝑁𝑁) − 𝑦𝑦)2],𝑦𝑦 = 𝑟𝑟𝑖𝑖 + 𝛾𝛾𝑄𝑄𝑛𝑛𝜋𝜋
,(𝑂𝑂′,𝑎𝑎1′ , . . . ,𝑎𝑎𝑁𝑁′)] (26)

where 𝑄𝑄𝑛𝑛𝜋𝜋
’ is the target critic network.

In our system, we suppose M edge nodes, each containing datasets
𝐷𝐷𝐷𝐷1, 𝐷𝐷𝐷𝐷2, … , 𝐷𝐷𝐷𝐷𝑗𝑗, 𝐷𝐷𝐷𝐷 𝑀𝑀 from different vehicles, and the loss function of the dataset 𝐷𝐷𝐷𝐷𝑗𝑗 at
each node j is:

𝐹𝐹𝑗𝑗(𝑤𝑤) =
1
𝐷𝐷𝐷𝐷𝑗𝑗

� 𝑓𝑓𝑖𝑖(𝑤𝑤)
𝑖𝑖∈𝐷𝐷𝐷𝐷𝑗𝑗

(27)

where 𝑤𝑤 represents the model parameter of MADDPG and symbol 𝑖𝑖 represents the training
sample. The objective of the Improved MADDPG approach is to optimize the integrated global
network model:

ℬ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝛽𝛽

𝐹𝐹𝑗𝑗(𝑤𝑤) (28)
where 𝛽𝛽 is the model of edge node j, and ℬ denotes the ensemble of all local network models
𝛽𝛽 . In this paper, 𝐹𝐹𝑗𝑗(𝑤𝑤) = 𝐿𝐿(𝜃𝜃𝑛𝑛) = 𝔼𝔼𝑜𝑜,𝑎𝑎,𝑟𝑟,𝑜𝑜, [𝑄𝑄𝑛𝑛𝜋𝜋(𝑂𝑂,𝑎𝑎1, . . . , 𝑎𝑎𝑁𝑁) − 𝑦𝑦2] , which is the loss

338 Jin et al.: Edge Computing Task Offloading of Internet of
Vehicles Based on Improved MADDPG Algorithm

function of the MADDPG model.
Different nodes have different data sets; the definition of the global loss function for all
distributed datasets is:

𝐹𝐹(𝑤𝑤) =
∑ 𝐷𝐷𝐷𝐷𝑗𝑗𝐹𝐹𝑗𝑗(𝑤𝑤)𝑀𝑀
𝑗𝑗=1

𝐷𝐷𝐷𝐷
(29)

where 𝐷𝐷𝐷𝐷 denotes the concatenation of all data sets, and 𝐹𝐹(𝑤𝑤) cannot be calculated directly if
the information cannot be shared among the nodes. In this study, the gradient descent
algorithm determines 𝑤𝑤 to get 𝐹𝐹(𝑤𝑤) to reach the minimum value, denoted as 𝑤𝑤∗. The local
model is updated locally, and the time of uploading to the cloud server is selected according
to the aggregation frequency. The global model will be updated after aggregation, and then the
updated network will be transmitted to each edge server.

Stochastic gradient descent is used to obtain the minimum value in (18), where each node
has a local parameter model 𝑤𝑤𝑗𝑗(𝑡𝑡), 𝑡𝑡 = 0,1,2, …indicates the iteration index. When t is 0, all
node's j's local parameters are set to the same value. When t>0, gradient descent is used to
update 𝑤𝑤𝑗𝑗(𝑡𝑡) based on the previous 𝑡𝑡 − 1 parameter values, and each node's local loss function
is called a local update. After one or more local updates, the cloud server performs global
aggregation; after aggregation, the parameters at each node are changed to reflect an average
of the values at all other nodes. Local updates and global aggregation are defined for each
iteration. After global aggregation, the parameter 𝑤𝑤𝑗𝑗(𝑡𝑡) changes. Using 𝑤𝑤𝚥𝚥� to denote the
parameter at the cloud server, the update rule for each node after global aggregation is as
follows:

𝑤𝑤𝑗𝑗(𝑡𝑡) = 𝑤𝑤𝚥𝚥�(𝑡𝑡 − 1) − 𝜂𝜂∇𝐹𝐹𝑗𝑗 �𝑤𝑤𝚥𝚥�(𝑡𝑡 − 1)� (30)
where 𝜂𝜂 denotes the step size, and for all iterations 𝑡𝑡:

𝑤𝑤(𝑡𝑡) =
∑ 𝐾𝐾𝑗𝑗𝑤𝑤𝑗𝑗(𝑡𝑡)𝑀𝑀
𝑗𝑗=1

𝐾𝐾
(31)

The 𝜏𝜏 step local update is executed at each node before the system performs global
aggregation; 𝑆𝑆𝑆𝑆 is the sum of the number of times each node's local iteration was performed,
assuming that 𝑆𝑆𝑆𝑆 is a multiple of 𝜏𝜏.

A distributed gradient descent approach determines the ideal values for ST and τ to
minimize the resource-limited global loss function. Denote the total number of global
aggregates in ST iterations by 𝐺𝐺 = 𝑆𝑆𝑆𝑆

𝜏𝜏
. Then it can be defined as:

𝑤𝑤𝑓𝑓 = argmin
𝑤𝑤∈{𝑤𝑤(𝐺𝐺𝐺𝐺)}

𝐹𝐹(𝑤𝑤) (32)
where 𝑤𝑤𝑓𝑓 is the obtained final model parameter, each node j first computes 𝐹𝐹𝑗𝑗(𝑤𝑤) and
transmits the result to the aggregator, which then computes 𝐹𝐹(𝑤𝑤).
We think about DK's different kinds of resources. Each resource is represented by d, where
𝑑𝑑 ∈ {1,2, … ,𝐷𝐷𝐷𝐷}, and 𝑙𝑙𝑚𝑚 are used to define the resources consumed by each local update step
at all nodes, and each global aggregation step consumes 𝑔𝑔𝑚𝑚 resources, so the total amount of
resources consumed is (𝑆𝑆𝑆𝑆 + 1)𝑙𝑙𝑚𝑚 + (𝐺𝐺 + 1) 𝑔𝑔𝑚𝑚. To represent the overall budget proposal
for m-type resources, we use the notation 𝐶𝐶𝑚𝑚:

min
𝜏𝜏,𝑁𝑁∈{1,2,3… }

𝐹𝐹�𝑤𝑤𝑓𝑓� (33)
 𝑠𝑠. 𝑡𝑡. (𝑆𝑆𝑆𝑆 + 1)𝑙𝑙𝑚𝑚 + (𝐺𝐺 + 1)𝑔𝑔𝑚𝑚 ≤ 𝐶𝐶𝐶𝐶𝑚𝑚

The estimation of 𝑙𝑙𝑚𝑚 and 𝑔𝑔𝑚𝑚 values relies on the kind of resource taken into account; for
example, if m is a bandwidth resource, 𝑔𝑔𝑚𝑚 is the sum of all nodes' bandwidth consumption.
These values are based on measurements of resource consumption made on the edge nodes
and the aggregator. Each type's resource consumption is determined by the aggregator, which

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 339

compares it to the 𝐶𝐶𝐶𝐶𝑚𝑚 budget, and if the consumed resources reach the limit, the learning
process will stop and return the result.

To solve the problem (33), the adaptive aggregation frequency algorithm is used to adjust
the frequency of local updates and aggregation of the edge server to solve for the value of 𝜏𝜏.
The edge server performs the process of local update, and the resultant aggregation is
performed on the cloud server; we suppose the aggregator kicks off the training phase by
broadcasting 𝑤𝑤(0), the initial value for the model parameter, to all edge nodes. The method
of aggregation frequency mentioned in [14] can be applied to this study to improve the
performance of edge computing for vehicular networking.

5. Analysis of experimental results
The hardware environment for this experiment uses the 11th Gen Intel Core i5-11400H @
270GHz for the CPU, NVIDIA GeForce RTX 3050 for the GPU, and Python 3.7 and Pytorch
1.10.2 for the experimental environment.

To fit the study of Internet of Vehicles, this paper uses a vehicle dataset, which needs to
be converted to an MNIST dataset format according to the experimental setup in [14]. This
dataset originates from the database of the California Institute of Technology, we divided the
dataset into eight categories which were divided into two cases with and without vehicles, and
the two cases included far, middle, left, and right. The dataset is converted to a grayscale map
and idx format. As shown in Fig. 4.

Fig. 4. Vehicle classification

Due to the consideration of experimental cost, we conduct the experiments in a simulated

environment with three nodes, and the experimental computer is used as a node along with the
cloud server. Heterogeneous clients were generated based on the class and size of the local
training data, and two classes were extracted for each client j. These nodes have different two-
class datasets on which the local model training is performed.

To better interpret the results, setting M to 1 and the high delay requirement in vehicular
networking, time is used as a single resource type in the experiment. 𝑙𝑙𝑚𝑚 and 𝑔𝑔𝑚𝑚 denote the
time required to update at the edge server and the time required to perform global aggregation
at the cloud server, respectively.

This paper examines four different modes for distributing data to different nodes. Mode
1: randomly assigning a set of data to edge servers; Mode 2: every edge server's set of data has
the same label; Mode 3: each edge server has the complete data set; Mode 4: the other data are
assigned to the later part of the servers, while the first half of the servers are given the first
four labels. The experimental results are shown in Fig. 5a and Fig. 5b.

vehicle

Non—vehicle

far left middle right

4 5 6 7

0 1 2 3

340 Jin et al.: Edge Computing Task Offloading of Internet of
Vehicles Based on Improved MADDPG Algorithm

Fig. 5a. Classification accuracy

Fig. 5b. Loss function value

The values determined by the frequency of model aggregation by the adaptive
federated learning method on the edge server are indicated by the dots in the above image. The
experiments in Fig. 5a and Fig. 5b make use of three edge computing nodes. The aggregation
frequency is used to maximize classification accuracy, as shown in Fig. 5a. Fig. 5b shows the
variation of the loss function values in the four modes. To minimize the loss function, the
aggregation frequency at the locations is employed. As a result, this technique calculates the
ideal model value faster and with less delay. Thus, the adaptive federated learning method
applies to MADDPG-based task offloading and is acceptable for the low delay scenarios
required in the IoV environment.

Table 2. Partial simulation parameters
Number of vehicles N [0,6]
Number of Edge nodes 3

CPU workload 𝐶𝐶𝑛𝑛 [0-1.5]Gcyles
Energy coefficient 𝜅𝜅 5*10-27

batch size 64
Learning rate 0.01

noise variance 𝜎𝜎2 100dBm

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 341

To conduct this experiment, some parameters are set, as shown in Table 2, and the results

are averaged over 2000 simulations. First, we evaluate the offloading utility of the proposed
algorithm under different algorithms. To verify the superiority of the collaborative Improved
MADDPG algorithm designed in this paper, the algorithm is verified by comparing the
cutting-edge intelligent body collaboration schemes such as MADDPG, MAA2C [23] (Multi-
Agent Advantage Actor-Critic), and so on. MADDPG and MAA2C algorithms are used for
multi-intelligent reinforcement learning, aiming to maximize the reward of multiple
intelligences on a set of tasks. MAA2C uses a centralized critic to estimate the value function
for all agents, while MADDPG uses a decentralized critic that estimates the value function for
each agent separately; but neither algorithm is combined with federated learning. The network
structure of MAA2C as shown in Fig. 6.

Fig. 6. MAA2C network structure

The training and execution phases of the algorithm can be separated. The agent interacts
with the IoV environment during execution to produce experiences, which are then saved in
the replay buffer. The agent uses a replay buffer as a source of training experiences for their
actor-network and critic network. Each agent accounts for additional knowledge about the
states and activities of the other agents through the experience extrapolated from the shared
replay buffer, and their interactions are straightforward, and estimate the value function of the
current state using a value function network and calculates the advantage value of each action,
which represents the benefit of the current action relative to the average action value.

Actor Critic

Agent 1

Actor Critic

Agent 2

Actor Critic

Agent N
…

Replay Buffer

IOV Environment
Experience

Centralized Training

Distributed Execution

Value function
network

The Advantage
Function

Policy network Action

Critic

Actors

s

a

r

En
vi

ro
nm

en
t

St
at

e

342 Jin et al.: Edge Computing Task Offloading of Internet of
Vehicles Based on Improved MADDPG Algorithm

When employing Improved MADDPG, Fig. 7 shows the relationship between the
number of vehicles and the number of channels. As more users use the same number of
channels, there can be channel congestion and an increase in delay in the system. Because
Improved MADDPG supports distributed computing and task unloading, as the number of
users grows, so do the available computing resources in the system, and edge computing
resources can be leveraged more completely to process tasks. This distributed computing and
task offloading can speed up task processing while decreasing delay. However, as the number
of channels rises, the delay falls when the number of cars stays the same. This is because
adding more channels can enhance the system's capacity for parallel transmission, lessen the
likelihood of channel congestion, and allow for the simultaneous transmission of data by more
users. This can shorten each user's wait time, which can shorten their transmission delay.
However, an excessive growth in the number of channels could result in higher costs. To
support each channel, associated hardware, and spectrum resources are needed, and obtaining
these resources requires cost. We limited the number of channels to 3 to save cost.

Fig. 7. The impact of channel numbers on different vehicle numbers

Fig. 8 illustrates the performance of the average offloading utility across varying numbers
of vehicles. It can be seen that our proposed algorithm demonstrates the best offloading utility,
the average offloading utility increases with the number of vehicles for less than four because
the MEC system has sufficient spectrum and computational resources to manage all of the
tasks offloaded from the vehicles in this instance. When thresholds are exceeded, the system's
utility drops due to the higher number of vehicles, offloading tasks, and resource utilization
competition. Our Improved MADDPG scheme still achieves optimal utility performance
compared to other learning schemes due to the adaptive algorithm. With five vehicles, the
average offloading utility of the improved MADDPG is 2% and 9% higher than that of the
MADDPG and MAA2C schemes, respectively. In summary, the Improved MADDPG
algorithm works well.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 343

Fig. 8. The utility of different algorithms

To test whether the improved MADDPG's performance is affected by the number of

vehicles, the global model iteration tests in this research vary from 1 to 6. As illustrated in Fig.
9, when the number of iterations is small, the utility is minimal or even negative; as the number
of iterations increases, the results tend to stabilize gradually. And the number of users affects
model quality; when there are four vehicles, the offloading utility is the greatest, because the
vehicles have to interact with one another to exchange model parameters and learning results.
As the number of vehicles grows, rises the communication overhead. Initially, as the number
of vehicles increases, more model updates become accessible, improving the offloading utility.
However, when the number of vehicles is too large, the communication overhead increases
and can outweigh the benefits of the offloading operation itself, resulting in a drop in utility.

Fig. 9. Performance of Improved MADDPG under different numbers of vehicles

Fig. 10 shows the simulation of the utility when performing task offloading with different

sizes of bandwidth from 20 bps to 120 bps on the IoV environment. As the bandwidth increases,
the offload utility of all three methods increases, which is because the larger the bandwidth,
the faster the data transfer will be, and thus the task offload can be done faster. Also, more
bandwidth means more reliable data transfer because there is less probability of error or loss

344 Jin et al.: Edge Computing Task Offloading of Internet of
Vehicles Based on Improved MADDPG Algorithm

during data transfer. Compared with the other two schemes, Improved MADDPG can obtain
higher utility; for example, when the bandwidth is 100bps, the average offload utility of the
Improved MADDPG scheme is 3.6% and 6.8% higher than that of the MADDPG, MAA2C
scheme, respectively.

Fig. 10. Offloading utility under different bandwidths

Fig. 11 shows the significant reduction in overall delay with the Improved MADDPG

algorithm. However, as the quantity of vehicles grows, the delay grows as well due to the
correlation between the number of users and the delay. The complexity of the tasks to be
processed increases accordingly. When the number of participating vehicles is all 3, the
Improved MADDPG algorithm reduces the delay by 29.6% compared to the MADDPG
algorithm.

Fig. 11. Comparison of delay between two algorithms

We analyzed the vehicle's computing capacity as well as the processing effectiveness of

tasks that were locally executed, as shown in Fig. 12. Due to the vehicle's limited
computational capacity and the tasks' poor processing efficiency, the results demonstrate that
local execution causes the system consumption to be at its greatest. For local users, using MEC

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 345

to do tasks has a cheaper computational cost than doing it locally. However, sending tasks to
edge servers for offloading presents connection quality uncertainty, and various link states can
occasionally cause transmission congestion. Although there is no local computing overhead in
this scenario, the network's intricacy makes it difficult to reduce the total overhead. The
random offloading decision algorithm, which mixes edge and local execution strategies, was
also studied. Because the transmission calculation is only executed when the link quality is
good, we discovered throughout our studies that the random offloading strategy results in
significant overhead.

We provide an Improved MADDPG algorithm that has the lowest cost out of the three
methods mentioned above. By producing work scheduling decisions at the lowest possible
cost, it enhances the quality of the user experience. Experiments demonstrate that compared
to the other three ways, our suggested algorithm uses fewer system resources under the same
circumstances.

Fig. 12. Cost under different task processing methods

6. Conclusion
The purpose of this study is to use an Improved MADDPG algorithm to make appropriate task
offloading decisions in the Internet of Vehicles. Experiments have demonstrated that this
algorithm substantially reduces delay while also improving offloading utility. The MADDPG
method incorporates federated learning to provide the optimal trade-off between local update
and overall aggregation, fixing the high real-time requirements of distributed edge computing
in the Internet of Vehicles. Further study is needed in the future for situations with widely
spread and numerous edge nodes to achieve the effectiveness of task offloading in heavy traffic
areas.

References
[1] Shichao Li et al., “Joint Admission Control and Resource Allocation in Edge Computing for

Internet of Things,” IEEE Network, vol. 32, no. 1, pp. 72-79, Jan.-Feb. 2018.
Article (CrossRef Link).

http://doi.org/%20doi:%2010.1109/MNET.2018.1700163

346 Jin et al.: Edge Computing Task Offloading of Internet of
Vehicles Based on Improved MADDPG Algorithm

[2] Ilija Hadžić, Yoshihisa Abe, and Hans Christian Woithe, “Server Placement and Selection for
Edge Computing in the ePC,” IEEE Transactions on Services Computing, vol. 12, no. 5, pp. 671-
684, 1 Sept.-Oct. 2019. Article (CrossRef Link).

[3] Abhishek Hazra et al., “Federated-Learning-Aided Next-Generation Edge Networks for Intelligent
Services,” IEEE Network, vol. 36, no. 3, pp. 56-64, May/June 2022. Article (CrossRef Link).

[4] Niranjan K. Ray, Deepak Puthal, and Dhruva Ghai, “Federated Learning,” IEEE Consumer
Electronics Magazine, vol. 10, no. 6, pp. 106-107, Nov. 2021. Article (CrossRef Link).

[5] Zhu Z, Hong J, Zhou J, “Data-free knowledge distillation for heterogeneous federated learning,”
International conference on machine learning (PMLR), pp. 12878-12889, July 2021.
Article (CrossRef Link)

[6] Lowe R, Wu Y I, Tamar A, et al., “Multi-agent actor-critic for mixed cooperative-competitive
environments,” Part of Advances in Neural Information Processing Systems (NIPS), 2017
Article (CrossRef Link)

[7] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou and X. Shen, “Delay-Aware Microservice
Coordination in Mobile Edge Computing: A Reinforcement Learning Approach,” IEEE
Transactions on Mobile Computing, vol. 20, no. 3, pp. 939-951, March 2021.
Article (CrossRef Link).

[8] R. Shuai, L. Wang, S. Guo and H. Zhang, "Adaptive Task Offloading in Vehicular Edge
Computing Networks Based on Deep Reinforcement Learning," in Proc. of 2021 IEEE/CIC
International Conference on Communications in China (ICCC), pp. 260-265, 2021.
Article (CrossRef Link).

[9] H. Ke, J. Wang, L. Deng, Y. Ge and H. Wang, "Deep Reinforcement Learning-Based Adaptive
Computation Offloading for MEC in Heterogeneous Vehicular Networks," IEEE Transactions on
Vehicular Technology, vol. 69, no. 7, pp. 7916-7929, July 2020. Article (CrossRef Link).

[10] Z. Qin, S. Leng, J. Zhou and S. Mao, "Collaborative Edge Computing and Caching in Vehicular
Networks," in Proc. of 2020 IEEE Wireless Communications and Networking Conference
(WCNC), pp. 1-6, 2020. Article (CrossRef Link)

[11] X. He, H. Lu, M. Du, Y. Mao and K. Wang, "QoE-Based Task Offloading With Deep
Reinforcement Learning in Edge-Enabled Internet of Vehicles," IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 4, pp. 2252-2261, April 2021. Article (CrossRef Link).

[12] Wang G, Xu F, Zhao C, “QoS‐enabled resource allocation algorithm in internet of vehicles with
mobile edge computing,” IET Communications, vol 14, no 14, pp, 2326-2333, 2020.
Article (CrossRef Link)

[13] Z. Ning, J. Huang, X. Wang, J. J. P. C. Rodrigues and L. Guo, "Mobile Edge Computing-Enabled
Internet of Vehicles: Toward Energy-Efficient Scheduling," IEEE Network, vol. 33, no. 5, pp. 198-
205, Sept.-Oct. 2019. Article (CrossRef Link).

[14] S. Wang et al., "Adaptive Federated Learning in Resource Constrained Edge Computing Systems,"
IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1205-1221, June 2019.
Article (CrossRef Link).

[15] Y. Lu, X. Huang, Y. Dai, S. Maharjan and Y. Zhang, "Differentially Private Asynchronous
Federated Learning for Mobile Edge Computing in Urban Informatics," IEEE Transactions on
Industrial Informatics, vol. 16, no. 3, pp. 2134-2143, March 2020. Article (CrossRef Link).

[16] S. Samarakoon, M. Bennis, W. Saad and M. Debbah, "Distributed Federated Learning for Ultra-
Reliable Low-Latency Vehicular Communications," IEEE Transactions on Communications, vol.
68, no. 2, pp. 1146-1159, Feb. 2020. Article (CrossRef Link).

[17] H. H. Yang, Z. Liu, T. Q. S. Quek and H. V. Poor, "Scheduling Policies for Federated Learning in
Wireless Networks," IEEE Transactions on Communications, vol. 68, no. 1, pp. 317-333, Jan.
2020. Article (CrossRef Link).

[18] M. M. Amiri and D. Gündüz, "Federated Learning Over Wireless Fading Channels," IEEE
Transactions on Wireless Communications, vol. 19, no. 5, pp. 3546-3557, May 2020.
Article (CrossRef Link).

http://doi.org/%20doi:%2010.1109/TSC.2018.2850327
http://doi.org/%20doi:%2010.1109/MNET.007.2100549
http://doi.org/doi:10.1109/MCE.2021.3094778
https://proceedings.mlr.press/v139/zhu21b.html
http://doi.org/doi:10.48550/arXiv.1706.02275
http://doi.org/10.1109/TMC.2019.2957804
http://doi.org/doi:%2010.1109/ICCC52777.2021.9580313
http://doi.org/10.1109/TVT.2020.2993849
http://doi.org/doi:10.1109/WCNC45663.2020.9120600
http://doi.org/10.1109/TITS.2020.3016002
https://doi.org/10.1049/iet-com.2019.0981
http://doi.org/10.1109/MNET.2019.1800309
http://doi.org/10.1109/JSAC.2019.2904348
http://doi.org/10.1109/TII.2019.2942179
http://doi.org/10.1109/TCOMM.2019.2956472
http://doi.org/%20doi:%2010.1109/TCOMM.2019.2944169
http://doi.org/%20doi:%2010.1109/TWC.2020.2974748

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 347

[19] W. Bao, C. Wu, S. Guleng, J. Zhang, K. -L. A. Yau and Y. Ji, "Edge computing-based joint client
selection and networking scheme for federated learning in vehicular IoT," China Communications,
vol. 18, no. 6, pp. 39-52, June 2021. Article (CrossRef Link).

[20] D. Chen et al., "Matching-Theory-Based Low-Latency Scheme for Multitask Federated Learning
in MEC Networks," IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11415-11426, July, 2021.
Article (CrossRef Link).

[21] Canh T Dinh, Nguyen Tran, and Josh Nguyen, “Personalized federated learning with moreau
envelopes,” in Proc. of 34th Conference on Neural Information Processing Systems (NeurIPS
2020), pp. 21394–21405, 2020. Article (CrossRef Link)

[22] Y. Zhou, H. Yu, Z. Li, J. Su and C. Liu, "Robust Optimization of a Distribution Network Location-
Routing Problem Under Carbon Trading Policies," IEEE Access, vol. 8, pp. 46288-46306, 2020.
Article (CrossRef Link).

[23] Xiao Y, Tan W, Amato C, “Asynchronous Actor-Critic for Multi-Agent Reinforcement Learning,”
arXiv preprint arXiv:2209.10113, 2022. Article (CrossRef Link).

Ziyang Jin received the B.S. degree in Communication Engineering from Northeast Electric
Power University, Jilin, China in 2020, She is pursuing a master's degree at Changchun
University of Science and Technology, Changchun, China. Her research interests include edge
computing and Internet of Vehicles.

YiJun Wang received the B.E. degree in communication engineering from College of
Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou, China in
2006, and the M.E. degree in signal and information processing from College of Electronic
and Information Engineering, Changchun University of Science and Technology, Changchun,
China in 2009 and the Ph.D. degrees in College of Communications Engineering from Jilin
University, Changchun, China in 2012. He is an Associate Professor with the Changchun
University of Science and Technology. His research interests include 5G/6G, Ad Hoc
Network.

Jingying Lv received the B.S. degree in Communication Engineering from Changchun
University of Science and Technology, Changchun, China in 2020, She is pursuing a master's
degree at Changchun University of Science and Technology, Changchun, China. Her research
interests include edge computing and Internet of Things.

http://doi.org/%20doi:%2010.23919/JCC.2021.06.004
http://doi.org/%20doi:%2010.1109/JIOT.2021.3053283
http://doi.org/%20doi:%2010.48550/arXiv.2006.08848
http://doi.org/%20doi:%2010.1109/ACCESS.2020.2979259
https://doi.org/10.48550/arXiv.2209.10113

